# **Original Article**

# Effect of yoga therapy on perceived stress, anxiety, quality of life, and heart rate in obese individuals.

# Buvanasvar Manoharan<sup>1</sup>, Shetty Shivaprasad<sup>2</sup>, Shetty Prashanth<sup>3</sup>

From, Clinical Yoga, SDM College of Naturopathy and Yogic Sciences, Ujire 574240, Dakshina Kannada, Karnataka.

**Correspondence to**: SDM College of Naturopathy and Yogic Sciences, Ujire 574240, Dakshina Kannada, Karnataka. Email ID: <u>buvaneshvar51294@gmail.com</u>

# ABSTRACT

**Background:** Obesity is associated with stress, anxiety, and decreased quality of life an epidemic responsible for metabolic disorders. Yoga a holistic approach is aimed at restoring the abnormalities of body and mind physiology to normal thereby restoring health. The study aimed to assess the effect of yoga therapy on perceived stress, anxiety, quality of life, and heart rate variability in obese individuals. **Materials and methods:** 60 obese individuals were recruited for the study based on inclusion and exclusion criteria. The study population was divided into case group (n=30) received yoga therapy for 10 days with routine lifestyle and diet, and control group (n=30) followed routine lifestyle and diet Assessments were done on day 1 and day10 for both groups. **Results:** In the post-test assessments of the case group with the control group, there was a significant reduction in scores of perceived stress scale, and Hamilton anxiety rating scale, also reduction in mean HR, LF, LF/HF, and a significant increase in mean R-R variables of HRV in the case group. **Conclusion:** Ten days of yoga therapy in obese individuals had a positive effect on perceived stress, anxiety, quality of life, and heart rate variability, indicating parasympathetic dominance. Hence, yoga therapy acts in primary and secondary prevention of obesity-associated stress and anxiety symptoms.

Keywords: Anxiety, Heart rate variability, Obesity, Perceived stress, Quality of life, Yoga.

besity an epidemic of the 21<sup>st</sup> century is a causative factor for metabolic disorders and is associated with depression, anxiety, and reduced quality of life [1<sup>-</sup>2]. The prevalence of overweight and obesity in Asian countries has increased in the past few decades. Southeast Asia and the western pacific region are facing an epidemic of diseases associated with obesity such as diabetes and cardiovascular diseases (CVD) [1].

In our modern society, obesity coincides with the increase in chronic stress. In the past years, evidence is intensifying that stress plays a role in the development of obesity [3]. Obesity itself can be a stressful status due to the high dominance of weight stigma [4] Obesity has been associated with low levels of quality of life [5] and leads to anxiety [6].

Yoga is an ancient Indian discipline, considered holistic therapy as this system considers the body as a whole. According to yoga, health of an individual is

characterized by good physical health, a balanced state of mind, constructive and social surroundings, and also high spiritual growth. This holistic approach is aimed at restoring the abnormalities of body and mind physiology to normal, thereby restoring health [7] Yoga has a beneficial effect through direct influence on the autonomic nervous system, improving wellbeing, reducing stress and anxiety. Evidence suggests, asana (physical posture), pranayama (breath regulation), dhyana (meditation), and relaxation techniques decrease sympathetic activation, regulates the hypothalamic-pituitary-adrenal axis thereby reducing stress, and anxiety, improve quality of life [8]. Hewett et al. (2018) concluded yoga significantly improved perceived stress in sedentary, stressed adults [9]. Chandla et al. show that pranayama for six weeks improves anxiety and increases parasympathetic activity[10]. Cramer et al. conclude yoga intervention is safe which had moderately strong positive effects on anthropometric variables and quality of life in women with abdominal obesity [11].

#### MATERIALS AND METHODS:

**Study setting and participants:** The study was conducted at Sri Dharmasthala Manjunatheshwara (SDM) Yoga and Nature Cure Hospital, Dharmasthala, Dakshina Kannada, India. Participants were screened from a consultation at SDM yoga and nature cure hospital and through a survey at Ujire town.

**Ethical approval:** Approval was obtained from the institutional ethical committee (EC-234). A signed informed consent form was obtained from all the participants after explaining in detail the study intervention and assessments. The study was registered in the Clinical Trials Registry India CTRI/2019/10/021775.

**Recruitment and sampling:** Out of 210 participants, 60 were selected based on inclusion and exclusion criteria. A sampling of the study population (n=60) was done by computer-generated random numbers into the case (n=30) and control (n=30) groups.

**Study design:** A concurrent parallel study was conducted. Pre (day 1) and post (day 10) intervention data of both groups were collected. Total (n=60) completed the postassessments and there were no dropouts. Cases received yoga intervention along with routine lifestyle and diet for 10 days and control group was asked to follow their routine lifestyle and diet during the study period (Fig 1).

**Data collection process:** The data was collected using self-assessment rating scales (PSS, perceived stress scale; HAM-A, Hamilton anxiety rating scale; QLI, Ferrans and Powers quality of life index) and polygraph equipment (BIOPAC, Montana, USA; model no: BSL 4.0 MP 36) for heart rate variability (HRV) spectrum.

**Inclusion and exclusion criteria:** Inclusion criteria included subjects with age group 18 to 35 years, both male and female gender, and obesity (BMI greater than  $30.0 \text{ kg/m}^2$ ).

Exclusion criteria comprised individuals with acute disease (appendicitis, influenza, etc.), recent trauma and injury, cardiovascular disease, and females during menstruation, pregnancy, and lactation.

**Intervention:** The case group was educated and practiced yoga for one-hour duration each day from six a.m. to seven a.m. for 10 days continuous. Detailed descriptions of the practices are tabulated in Table 1. The control group did not practice yoga, followed their routine lifestyle during the assessment period.

Assessments: *Perceived stress scale:* Items within the scale were designed to trap how unpredictable, uncontrollable, and overloaded respondents find their life, also included several direct queries about current levels of experienced stress. Questions within the PSS asked about feelings and thoughts during the last month, respondents were asked how often they felt a particular way.

*Hamilton anxiety rating scale:* The scale consisted of 14 items, defined by a series of symptoms, and measured both psychic and somatic anxiety.

*Ferrans and powers quality of life index:* This instrument consisted of two parts: the first measured satisfaction with various aspects of life and the second measured importance of those same aspects. Scores were calculated for overall quality of life in four domains: health and functioning, psychological/ spiritual, social and economic, and family.

*Heart rate and heart rate variability spectrum (HRV):* The electrocardiogram (ECG) was recorded using standard bipolar limb lead II configuration (BIOPAC, Montana, USA; model NO: BSL 4.0 MP 36). The ECG was digitized using a 12-bit analogue to digital converter point event series of successive R-R intervals, from which the beat-to-beat heart rate series was computed.

#### Statistical analysis:

The data collected was analyzed using Statistical Package for Social Sciences (SPSS) version 23.0 and was checked for normality using the Kolmogorov-Smirnov test. The pre- and post-data of case and control groups with normal distribution were analyzed by parametric tests, independent t (between groups), and paired t-tests (withingroup). Comparison of pre- and post-data of case and control groups with not normal distribution were analyzed using non-parametric tests, Mann Whitney u test (between groups), and Wilcoxon signed-rank test (within-group). A p-value of <0.05 was considered statistically significant.

#### **RESULTS:**

This study was conducted to evaluate whether yoga therapy influenced perceived stress, anxiety, quality of life, and heart rate variability in obese individuals. Case group: 53% males and 47% females with mean age of 26.87 $\pm$ 4.55 years and mean BMI (body mass index) of 29.12. In case group, post assessment showed significant improvement (p<0.0001) in PSS (sample t-test: t=-10.92), HAM-A (t=-12.19), QLI (t=8.94).

| Name Of the Practice                                                      |                                            | Rounds (Number of | Duration  |
|---------------------------------------------------------------------------|--------------------------------------------|-------------------|-----------|
|                                                                           |                                            | Times Repeated)   | (Minutes) |
| Sukhasana (Easy posture) and Prarthana mantra chanting (Universal Prayer) |                                            | 1                 | 1         |
| Suryanamaskara                                                            |                                            | 5                 | 10        |
| Standing series                                                           | Ardhachakrasana                            | 1                 | 1         |
| asana                                                                     | Trikonasana                                | 1                 | 1         |
| Supine series asana                                                       | Uttitapadasana                             | 1                 | 1         |
|                                                                           | Vipareetakarani                            | 1                 | 1         |
|                                                                           | Naukasana                                  | 1                 | 1         |
|                                                                           | Pavanamuktasana                            | 1                 | 1         |
| Prone series asana                                                        | Bhujangasana                               | 1                 | 1         |
|                                                                           | Shalabasana                                | 1                 | 1         |
|                                                                           | Dhanurasana                                | 1                 | 1         |
|                                                                           | Navasana                                   | 1                 | 1         |
| Instant Relaxation Te                                                     | echnique (IRT)                             | 1                 | 2         |
| Pranayama's                                                               | Bhastrika (bellows breathing)              | 36-50 strokes     | 3         |
|                                                                           | Kapalabhati                                | 250-300 strokes   | 5         |
|                                                                           | Anulom-vilom (alternate nostril breathing) | 20-25             | 6         |
|                                                                           | Surya bhedana (Right nostril breathing)    | 20-25             | 3         |
| Deep Relaxation Technique (DRT)                                           |                                            |                   | 20        |
| Total Duration                                                            |                                            |                   | 60 min    |

### Table 1: Obesity yoga therapy protocol

Control group consists of 40% males and 60% females with mean age of  $28.47\pm4.59$  years and mean BMI of 29.68. R (p=0.0004, t=3.79), mean HR (p=0.0003, t= -3.82), LF (t=-2.91, p=0.005), LF/HF (t=-2.41, p=0.01). RMSSD (t=0.661, p=0.511), NN50 (t=0.95, p=0.343), pNN50 (t=1.71, p=0.087) and HF (t=1.64, p=0.10) were not significant. Comparison between case and control groups revealed, significant changes in PSS (95% CI: -15.5 to -10.97), HAM-A (95% CI, -18.29 to -11.7), QLI (95% CI, 7.06 to 10.04) with p value <0.001.

| Variables | Case       | Control    | <b>x</b> <sup>2</sup> | P value |
|-----------|------------|------------|-----------------------|---------|
| Age       | 26.87±4.55 | 28.47±4.59 | 1.67                  | 0.65    |
|           |            |            | (df=3)                |         |
| Gender    | 16,14      | 12,18      | 1.07                  | 0.30    |
| (M: F)    |            |            | (df=1)                |         |
| BMI       | 29.12±2.15 | 29.68±1.87 | 1.9                   | 0.28    |

Also, significant changes in Mean HR (p=0.03) of time domain variable, LF (p=0.0003), HF (p=0.01), LF/HF (p=0.02) of frequency domain variables. The change was not significant in mean RR (p=0.1), RMSSD (p=0.8), NN50 (p=0.2) and pNN50 (p=0.1) in time domain variables of HRV (Table 4, figure 2).

 Table 3: Comparison of pre and post-tests within the case group

| Variables        | Pre-test          | Post-test        | P value   |
|------------------|-------------------|------------------|-----------|
|                  | $mean \pm SD$     | mean ± SD        |           |
| PSS              | 30.3±3.3          | 18.6±4.85        | <0.0001** |
| HAM-A            | 33.6±4.2          | 18.8±5.15        | <0.0001** |
| QLI              | $11.56 \pm 1.84$  | $19.48 \pm 4.49$ | <0.0001** |
| Time-domain      |                   |                  |           |
| Mean R-R         | 740.7±75.98       | 832.64±108.9     | 0.0004**  |
| Mean HR          | 86.1±13.49        | 75.47±7.07       | 0.0003**  |
| RMSSD            | 124.6±169.2       | 153.5±169.5      | 0.511     |
| NN50             | $72.63 \pm 97.84$ | 97.67±104.9      | 0.343     |
| pNN50            | 17.95±13.9        | 24.52±15.3       | 0.087     |
| Frequency domain |                   |                  |           |
| LF               | 50.34±19.6        | 37.24±14.9       | 0.005*    |
| HF               | $47.59 \pm 20.28$ | $56.6 \pm 22.05$ | 0.10      |
| LF/HF            | $1.54{\pm}1.38$   | $0.87 \pm 0.64$  | 0.01*     |

\*significant, \*\*highly significant. PSS, Perceived stress Scale; HAM-A, Hamilton Anxiety; QLI, Ferrans and Powers Quality of Life Index; Mean R-R, the successive interval between R-R; HR, Heart rate; RMSSD, root mean square of the successive normal sinus RR interval difference; pNN50, percentage of absolute differences between successive normal RR intervals that exceed 50ms; LF, Low frequency; HF, High frequency Table 4: Comparison of post-test variables of case andcontrol groups

| Variables        | Case             | Control           | P value   |
|------------------|------------------|-------------------|-----------|
|                  | mean ± SD        | mean ± SD         |           |
| PSS              | 18.6±4.85        | 32.87±3.2         | <0.0001** |
| HAM-A            | 18.8±5.15        | 33.2±3.6          | <0.0001** |
| QLI              | 19.48±4.49       | 10.0±2.01         | <0.0001** |
| Time-domain      |                  |                   |           |
| Mean R-R         | 832.64±108.9     | 786.6±108.85      | 0.1       |
| Mean HR          | 75.47±7.07       | 81.75±13.7        | 0.03*     |
| RMSSD            | 153.5±169.5      | $165.2 \pm 196.2$ | 0.8       |
| NN50             | 97.67±104.9      | 68.3±85.7         | 0.2       |
| pNN50            | 24.52±15.3       | $16.56 \pm 21.4$  | 0.1       |
| Frequency domain |                  |                   |           |
| LF               | 37.24±14.9       | 53.45±17.7        | 0.0003**  |
| HF               | $56.6 \pm 22.05$ | 43.6±17.6         | 0.01*     |
| LF/HF            | $0.87 \pm 0.64$  | $1.75 \pm 1.88$   | 0.02*     |

 Table 5: Comparison of pre and post-tests within the control group

| Variables        | Pretest            | Post-test          | P value |
|------------------|--------------------|--------------------|---------|
|                  | mean ± SD          | mean ± SD          |         |
| PSS              | 31.23±3.3          | 32.87±3.2          | 0.055   |
| HAM-A            | 32.9±4.2           | 33.2±3.6           | 0.767   |
| QLI              | 10.6±2.1           | 10.0±2.01          | 0.262   |
| Time-domain      |                    |                    |         |
| Mean R-R         | 773.2±84.6         | 786.6±81.75        | 0.630   |
| Mean HR          | 161.3±69.87        | $165.2 \pm 68.3$   | 0.420   |
| RMSSD            | $17.93 \pm 105.8$  | $16.56 \pm 108.85$ | 0.937   |
| NN50             | $13.49 \pm 188.08$ | 13.7±196.2         | 0.945   |
| pNN50            | 91.75±22.7         | 85.7±21.4          | 0.810   |
| Frequency domain |                    |                    |         |
| LF               | 52.33±44.83        | 53.45±43.6         | .823    |
| HF               | $2.30\pm21.9$      | $1.75 \pm 17.7$    | 0.812   |
| LF/HF            | 22.16±3.13         | 17.6±1.88          | 0.412   |

PSS, Perceived stress Scale; HAM-A, Hamilton Anxiety; QLI, Ferrans and Powers Quality of Life Index; Mean R-R, the successive interval between R-R; HR, Heart rate; RMSSD, root mean square of the successive normal sinus RR interval difference; pNN50, percentage of absolute differences between successive normal RR intervals that exceed 50ms; LF, Low frequency; HF, High frequency; LF/HF, the ratio of low frequency to high frequency.

In the control group, pre- and post-data results showed insignificant variation in PSS, HAM-A, and QLI. Shortterm HRV measurements of time and frequency domain variables also showed an insignificant difference between pre- and post-data (Table 5).

#### DISCUSSION

The study aimed to evaluate the effect of yoga therapy on obese individuals. In the present study, following yoga therapy, there was a significant reduction in PSS, HAM-A, Mean HR, LF, and LF/HF ratio and a significant increase in QLI, Mean RR, and insignificant increase in RMSSD, NN50, pNN50, and HF in the case group. These results of this study are suggestive of a shift in sympathovagal balance towards parasympathetic dominance.

In this study, the comparison of post-test variables in case and control groups, the mean scores of PSS significantly decreased in the case group. In the studies by Woodyard C and according to Tyagi A, yoga leads to inhibition of the sympathetic area of the hypothalamus. This inhibition optimizes the body's sympathetic response to stressful stimuli downregulates the hypothalamicpituitary-adrenal (HPA) axis and the sympathetic activity and restores the autonomic regulatory reflex mechanism associated with stress promoting stress relief and relaxation. Further, the author states, duration of yoga practices depends on the individual's level, in the latter the author did not specify the duration of yoga practices [12-13]. A clinical trial on adult obese individuals states, reduced levels of perceived stress are associated with lower cortisol secretion, which contributes to a reduction of obesity, adoption of healthier dietary habits, and subsequent loss of weight [14]. In the present study following yoga therapy (YT) for ten days, the stress levels decreased significantly in obese individuals.

HAM-A scales mean score of anxiety decreased significantly in the case group. In an explorative review article, yoga practices inhibit the areas responsible for fear, aggressiveness, and rage; stimulate the rewarding pleasure centers in the median forebrain and other areas leading to a state of bliss and pleasure. This inhibition leads to lower anxiety, pulse, rate of respiration, and cardiac output. According to a review duration of yoga practices depends on the individual level, not specified commonly [12]. The current study specified ten days of YT resulted in the reduction of anxiety scores in the case group, indicating reduced symptoms of psychic and somatic anxiety.

The mean overall scores of QLI increased significantly in the case group in aspect to the improved person's satisfaction of life towards health and functioning, psychological/spiritual, social and economic, and family, by reducing stress, anxiety, and weight in obese individuals. A study with a large sample size (yoga experienced n=298) by Telles *et al.* resulted in participants, reporting higher outcomes in four out of six aspects in quality of life (enjoyment in physical activities, ability to work, self-esteem, and social satisfaction) in

yoga experienced group compared to the yoga naïve [15].

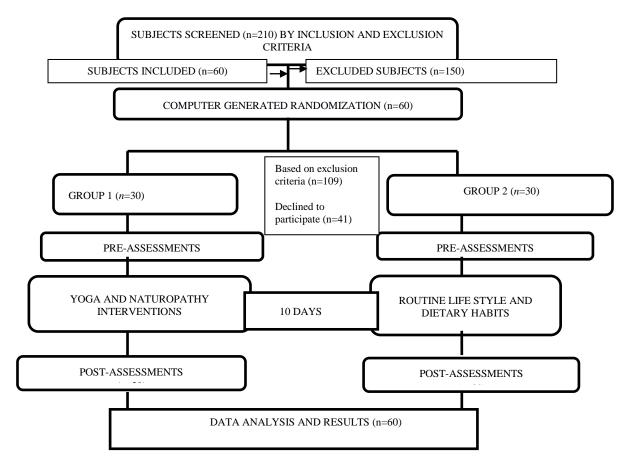



Figure 1: Illustration of the study plan

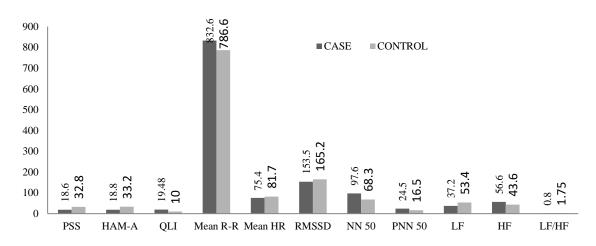



Figure 2: Changes after the 10 days of intervention in case and control group

PSS, Perceived stress Scale; HAM-A, Hamilton Anxiety; QLI, Ferrans and Powers Quality of Life Index; Mean R-R, the successive interval between R-R; HR, Heart rate; RMSSD, root mean square of the successive normal sinus RR interval difference; pNN50, % of absolute differences between successive normal RR intervals that exceed 50ms; LF, Low frequency; HF, High frequency; LF/HF, the ratio of low frequency to high frequency. Y-axis represents data presented in mean values.

The HRV variables in the time domain, Mean RR showed an insignificant increase, Mean HR reduced significantly, RMSSD insignificantly decreased, NN50 and pNN50 insignificantly increased in the case group. According to Lanfranchi PA and Somers high variability of the RR interval is a recognized index of the ability of the cardiovascular system to cope with environmental challenges [16]. A decrease in the heart rate could be due to increased vagal tone or due to sympathetic withdrawal (heart rate is regulated by sympathetic and vagal innervations), reflects efficient vagal activity and flexible autonomic regulation [13].

An increase in RMSSD suggests parasympathetic predominance states McCall T [17]. Following YT insignificant reduction in RMSSD could be associated with parasympathetic saturation but Altini M states that reduction necessarily is not bad, considering along with HR can figure out the findings [18]. An increase in the NN50 and pNN50 count in time domain analysis of HRV is indicative of parasympathetic activity reported by Telles S *et al.* in their study [19]. In this study following YT in the case group, the changes in the time domain suggests obese individuals cope with environmental challenges.

In the frequency-domain variables, LF and LF/HF power significantly reduced, HF power significantly increased in the case group. A meta-analysis and review of literature by Kim HG et al. states, low parasympathetic activity variation in HRV is characterized by a decrease in the HF (lower HF power is correlated with stress, anxiety, and decrease quality of life) and an increase in the LF [20]. A short-term effect of integrated yoga revealed that SDNN, RMSSD, mean HR were significantly developed and LF, LF/HF ratio significantly reduced after one month yoga practice, indicating shift towards of а parasympathetic dominance. The study concluded that yoga intervention significantly reduced anxiety and perceived stress and shift towards parasympathetic dominance in heart rate variability [21], whereas in this study the results were obtained with ten days of the interventions indicating parasympathetic dominance from the outcome of HRV results, leading to reduced HR and decreased sympathetic activation.

The ability of yoga to influence autonomic function has been the subject, suggest that yoga practices reduce autonomic arousal and assist stress-related disorders according to a bibliometric analysis [22]. Effects of yoga on autonomic function may be due to resonance effects produced by changes in respiration or by other mechanisms such as rhythmical skeletal muscle tension during various yoga postures that lead to vagal dominance and enhanced baroreflex gain without corresponding changes in HRV.

Further research with a larger population and sample size are needed to examine the influence on autonomic variables, as well as studies with a longer duration of interventions and/or practices with long-term follow-up compared to an active control group and a range of assessment approaches.

## CONCLUSION

This ten-day intervention study found a significant effect on perceived stress, anxiety, quality of life, and heart rate variability in obese individuals. Perceived stress and anxiety levels reduced whereas the quality of life and heart rate variability improved in the experimental group. The results suggest a parasympathetic dominance in obese individuals. From this study, it's evident; yoga manages the stress and anxiety associated with obesity.

# ACKNOWLEDGEMENT

We are thankful to Asst. Prof Dr. Shashikiran (SDM, College of Naturopathy and Yogic Sciences) for his guidance and support and Mr. V. Mani (biostatistician) for data analysis.

# REFERENCES

1. Ramachandran A, Snehalatha C. Rising burden of obesity in Asia. Journal of Obesity. 2010;2010:1–8.

2. Rogers JM, Ferrari M, Mosely K, Lang CP, Brennan L. Mindfulness-based interventions for adults who are overweight or obese: A meta-analysis of physical and psychological health outcomes. Obesity Reviews. 2016;18(1):51–67.

3. van der Valk ES, Savas M, van Rossum EF. Stress and Obesity: Are there more susceptible individuals? Current Obesity Reports. 2018; 7(2):193–203.

4. Tomiyama AJ. Stress and Obesity. Annual Review Psychol. 2019;70:703–18.

5. Vancini RL, Rayes ABR, de Lira CAB, Sarro KJ. Pilates and aerobic training improve levels of depression, anxiety and quality of life in overweight and obese individuals. Arq Neuropsiquiatr [Internet]. 2017;75(12):850-7.

6. Amiri S, Behnezhad S. Obesity and anxiety symptoms: a systematic review and meta-analysis. Neuropsychiatrie. 2019; 33(2):72–89.

7. Piziak VK. Management of obesity. Complementary Therapy. 1987; 13(1):7–12.

8. C. McCall M. How might Yoga Work? An Overview of Potential Underlying Mechanisms. J Yoga Phys Ther. 2013;03(01).

9. Hewett ZL, Pumpa KL, Smith CA, Fahey PP, Cheema BS. Effect of a 16-week Bikram yoga program on perceived stress, self-efficacy and health-related quality of life in stressed and sedentary adults: A randomised controlled trial. J Sci Med Sport. 2018; 21(4): 352–7.

10. Chandla SS, Sood S, Dogra R, Das S, Shukla SK, Gupta S. Effect of short-term practice of pranayamic breathing exercises on cognition, anxiety, general well being and heart rate variability. J Indian Med Assoc. 2013;111(10):662–5.

11. Cramer H, Thoms MS, Anheyer D, Lauche R, Dobos G. Yoga for women with abdominal obesity: a randomised controlled study. Dtsch Arztebl Int. 2016;113(39):645–52.

12. Woodyard C. Exploring the therapeutic effects of yoga and its ability to increase quality of life. Int J Yoga. 2011;4(2):49.

13. Tyagi A. Psychophysiological and Metabolic Changes With Yoga Practices. RMIT Res Hub. 2014;(November):1–240.

14. Xenaki N, Bacopoulou F, Kokkinos A, Nicolaides NC, Chrousos GP, Darviri C. Impact of a stress management program on weight loss, mental health and lifestyle in adults with obesity: a randomized controlled trial. J Mol Biochem. 2018; 7(2):78–84.

15. Telles S, Sharma SK, Singh A, Kala N, Upadhyay V, Arya J, et al. Quality of Life in Yoga Experienced and Yoga Naïve Asian Indian Adults with Obesity. J Obes. 2019;2019:1-7.

16. Lanfranchi PA, Somers VK. Cardiovascular Physiology: Autonomic Control in Health and in Sleep Disorders. In: Principles and Practice of Sleep Medicine: Fifth Edition [Internet]. Elsevier Inc.; 2010 [cited 2021 Jul 12]. p. 226–36. Availablefrom:https://mayoclinic.pure.elsevier.com/en/public ations/cardiovascular-physiology-autonomic-control-inhealth-and-in-slee

17. McCall T. Yoga as medicine: The yogic prescription for health and healing. New York: Bantam; 2012. 400 p.

18. Altini M. Interpreting HRV Trends in Athletes [Internet]. 2015 [cited 2021 Jul 12]. Available from: https://www.hrv4training.com/blog/interpreting-hrv-trends

19. Telles S, Gerbarg P, Kozasa EH. Physiological effects of mind and body practices. BioMed Research International. Hindawi Limited. 2015; 2015:1-2.

20. Kim HG, Cheon EJ, Bai DS, Lee YH, Koo BH. Stress and heart rate variability: A meta-analysis and review of the literature. Psychiatry Investigation. Korean Neuropsychiatric Association. 2018;15(3): 235–45.

21. Sumitra Sudharkodhy, Karthiyanee Kutty, N J Patil VS. Short term effect of integrated Yoga on anxiety, stress and heart rate variability in first year medical student. Indian J Clin Anat Physiol. 2018;5(1):97–103.

22. Jeter PE, Slutsky J, Singh N, Khalsa SB. Yoga as a therapeutic intervention: A Bibliometric analysis of published research studies from 1967 to 2013. J Alternative Complementary Med. 2015; 21(10) 586–92.

**How to cite this article:** Manoharan B, Shivaprasad S, Prashanth S. Effect of yoga therapy on perceived stress, anxiety, quality of life, and heart rate variability in obese individuals. Indian J Integr Med. 2021; 1(2) 49-55.

Funding: None

Conflict of Interest: None Stated