A intermediate (A_{int}) subgroup with warm anti-A₁ antibody: A case report

Saurabh Lahare¹, Minal Wasnik², Ramesh Chandrakar³

From ¹Blood Transfusion Officer, ²Assistant Professor, ³Associate Professor, Department of Transfusion Medicine and Blood Bank, AIIMS, Raipur, Chhattisgarh, India

ABSTRACT

A intermediate (A_{int}) subtypes exhibit characteristics intermediate between A_1 and A_2 . Plasma from A_{int} individuals contains different enzyme, UDP-GalNAc: fucosylgalactoside-a-3-N-acetylgalactosaminyl transferase, which is different from the enzyme in A_1 and A_2 plasma. We encountered the case of a 54-year-old female (having pneumonia and chronic kidney disease) for pre-transfusion testing. On routine grouping, we encountered group discrepancies. On testing, anti-A gave 4+, anti-B-0, anti-A₁ lectin-2+, anti-H lectin, and anti-AB antisera gave 4+ reactions. Reverse grouping gave 4+ with B cells, 2+ at room temperature with A cells, and 4+ and 1+ at 37°C and 4°C. Saliva inhibition studies showed A and H substances. It was typed as an A_{int} group with warm anti-A₁ antibody. It's the 1st time ever we encountered A_{int} case with a warm type anti-A₁ antibody. Here, O group packed red cells are the suitable blood units to transfuse.

Keywords: A subgroup, A_{int}, Anti-A₁, Red cell antibody, Warm antibody

and A_2 are the major subgroups of A. This differentiation is based on the reactivity of A_1_{cells} and not A_2_{cells} with anti-A₁ lectin. A_2_{cells} show increased reactivity with anti-H lectin [1].

We report the case of a 54-years-old female having a rare A intermediate (A_{int}) subgroup having warm type anti-A₁ antibody which is the first such case encountered by us. Warm anti-A₁ antibody reactive at 37°C may cause hemolysis if transfused with A₁ red cells.

CASE REPORT

A 54-year-old female sample was sent for pre-transfusion testing at our department. She was having pneumonia for the past 2 months and chronic kidney disease for the past 20 months approximately. As per the patient's husband, she had her last red cells transfusion nearly 4 months back without any adverse event in some outside private hospital (ABO group of the last red cells transfused unknown). She had no history of any red cell alloantibody identified previously and she was typed as "A positive."

On routine grouping, her blood group came out to be "A positive" with anti- A_1 antibody reacting at room temperature which got enhanced at 37°C. No such case has ever been reported in this region (central India) and at our institute previously. Typing this case as group "A" (as was done previously at some private

Access this article online						
Received - 30 September 2021 Initial Review - 09 October 2021 Accepted - 22 November 2021	Quick Response code					
DOI: 10.32677/ijcr.v7i11.3138						

institute) and transfusing with a simple A_1 group could lead to a hemolytic transfusion reaction.

All tests were done with the conventional test tube method. Test sample first underwent forward and reverse blood grouping [2]. Blood grouping was done at three temperatures (room temperature, 4°C and 37°C) due to discrepancy and was followed by saliva testing [2]. All the antisera were from the BioRad company and were as per the quality standards (known A_2 red cells were unavailable). D_1 and D_2 in the forward grouping were IgM anti-D antisera from different lots of the same company. For saliva testing, only controls with saline tubes were put as saliva from known secretor, non-secretor, and anti-Lewis antisera which were unavailable. Plasma enzyme determination and molecular testing facilities were unavailable.

On further testing, anti- A_1 lectin gave 2+ reaction, anti-H lectin and anti-AB antisera gave 4+ reactions. Reverse grouping had clear cut 4+ reactivity with B cells, while reactivity with A cells varied with temperatures (Table 1) [2]. Table 2 [1] shows the reactivity patterns of A_1 and A_2 subtypes of A (Tables 1 and 2 show the comparison of reaction between the test sample and that of A_1 and A_2 to establish intermediate antigen strength). Saliva inhibition studies demonstrated the presence of A and H substances as the reactivity of the test saliva on inhibition test showed nil reaction with test tubes containing anti-A antisera and anti-H lectin, while test tube with anti-B antisera showed 1+ reaction showing absence of B antigen in saliva. Saline controls were negative (Table 3) [3]. It was typed as an A_{int} group with warm type anti- A_1 antibody. Fig. 1a shows the reactivity of red cells

Correspondence to: Dr. Saurabh Lahare, HDD 1/222, Phase III, Kabir Nagar, Tatibandh, Raipur, Chhattisgarh, India. E-mail: saurabh.lahre@gmail.com

^{© 2021} Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC-ND 4.0).

Table 1: Forward and reverse grouping [2]										
Anti-A	Anti-B	Anti-H	Anti-A ₁	Anti-AB	Anti-D ₁ and D ₂	A _c	B _c	O _c	Auto	control
4+	0	4+	2+	4+	4+	2+	4+	0	0	RT
4+	0	4+	2+	4+	4+	4+	4+	0	0	37°C
4+	0	4+	2+	4+	4+	1+	4+	0	0	4°C

RT: Room temperature, Ac: Pooled A cells, Bc: Pooled B cells, Oc: Pooled O cells

Table 2: Normal red cell and serum	reactions with A	and A,	cells	[1]
------------------------------------	------------------	--------	-------	-----

Red cell reactions with anti-sera and lectins				Serum reactions with reagent red cells				
Red cell phenotype	Anti-A	Anti-B	Anti-A, B	Anti-H	A ₁ cells	B cells	O cells	Saliva (secretors)
A	4+	0	4+	0	0	4+	0	А, Н
A ₂	4+	0	4+	2+	0/2+	4+	0	А, Н

Table 3: Inhibition testing result on saliva testing [3]

I	nhibition test with t	est sample saliva	Saline controls			
	Test tube with saliva+Anti-A+A cells	Test tube with saliva+Anti-B+B cells	Test tube with saliva+Anti-H+O cells	Test tube with normal saline+Anti-A+A cells	Test tube with normal saline+Anti-B+B cells	Test tube with normal saline+Anti-H+O cells
Reactivity with unknown (test sample) test tubes	0	1+	0	1+	1+	1+

Figure 1: Test sample with (a) anti-A₁ lectin; test sample reverse with Ac at (b) 4°C; (c) 37°C

with anti- A_1 lectin and Fig. 1b and c show reverse A cells at 4°C and 37°C (titer of warm anti- A_1 antibody could not be performed as patient succumbed to illness 2 days after we received blood and saliva sample).

DISCUSSION

Landsteiner and Levine first recognized an additional subtype of A, that is, A_{int} . It is considered a heterogeneous subgroup which is more common in Black people than in White people. In India, the incidence of Aint was reported to be 2% [3]. Plasma from A_{int} individuals contains glycosyltransferase enzyme different from A_1 and A_2 which is UDP-GalNAc: 2'-fucosylgalactoside-a-3-N-acetylgalactosaminyl transferase. This A_{int} enzyme shows a strong affinity to UDP-GalNAc and low affinity to 2'-fucosyllactose, which is a soluble analog of H substance [4].

Three different enzymes were detected when A_1 , A_2 , and A_{int} type plasma were examined for glycosyltransferases [5]. It is possible to differentiate the A subtypes by examining the kinetic characteristics of α -N-acetylgalactosaminyltransferases in the plasma of various A subtypes. Mutations in ABO alleles result in differences in the specificity and activity of glycosyltransferase

enzymes [6]. A_2 organs can be transplanted to O recipient [1], so the distinction of A_{int} group is very important as no clearcut guidelines are available for A_{int} group organ transplantation and A_{int} group is underreported in our country and especially in the region of Central India. The prevalence values of A_1 , A_2 , and weak subgroups in South India were reported to be 98.4%, 1.85%, and 0.01%, respectively [7]. The importance of subtyping A blood group and identification of A_{int} has been discussed in a case report in South India [8]. A subgroups like A_2 or others may have anti- A_1 antibody reactive at 37°C and should receive either O group or same group packed red cells but not A_1 red cells [1]. Yoshida *et al.* showed in a study that an individual can be even A_{int} B group and plasma enzyme determination is better than routine serological methods in determination of A_1 , A_2 , or A_{int} subtypes [9,10].

CONCLUSION

We have previously encountered A_{int} case in this region but it's the 1st time ever we encountered an A_{int} case with a warm-type anti- A_1 antibody. Here, O group packed red cells are the suitable blood units to transfuse. It's recommended to always test any anti-A₁ antibody encountered in various temperatures so that any hemolytic transfusion reaction could be prevented.

REFERENCES

- Olsson ML, Westman JS. ABO and other carbohydrate blood group systems. In: Cohn CS, Delaney M, Johnson ST, Katz LM, editors. AABB Technical Manual. 20th ed. Bethesda: AABB Press; 2017. p. 297-328.
- Cohn CS, Delaney M, Johnson ST, Katz LM. Methods and Appendices: Red Cell Typing Methods. In: AABB Technical Manual. 20th ed. Bethesda: AABB Press; 2017. Method 2-2.
- Cohn CS, Delaney M, Johnson ST, Katz LM. Methods and Appendices: Red Cell Typing Methods. In: AABB Technical Manual. 20th ed. Bethesda: AABB Press; 2017. Method 2-8.
- Transcon PP. Abstracts compilation. Asian J Transfus Sci 2021;15 Suppl S1:16-89.
- Yoshida A, Davé V, Branch DR, Yamaguchi H, Okubo Y. An enzyme basis for blood Type A intermediate status. Am J Hum Genet 1982;34:919-24.

- Yoshida A, Davè V, Hamilton HB. Imbalance of blood Group A subtypes and the existence of superactive B gene in Japanese in Hiroshima and Nagasaki. Am J Hum Genet 1988;43:422-8.
- Thakral B, Saluja K, Bajpai M, Sharma RR, Marwaha N. Importance of weak ABO subgroups. Lab Med 2005;36:32-4.
- Shastry S, Bhat S. Imbalance in A₂ and A₂B phenotype frequency of ABO group in South India. Blood Transfus 2010;8:267-70.
- Sachan D. Blood group A (int) causing uncertainty during organ donor work-up for incompatible (A2-O) liver transplantation. Blood Transfus 2013;11:460-1.
- Yoshida A, Davé V, Prchal J. Uncertainty in identification of blood Group A subtypes by agglutination test. Hum Hered 1985;35:1-6.

Funding: None; Conflicts of Interest: None Stated.

How to cite this article: Lahare S, Wasnik M, Chandrakar R. A intermediate (A_{int}) subgroup with warm anti-A₁ antibody: A case report. Indian J Case Reports. 2021;7(11):506-508.