A case report on severe combined immune deficiency: A rare inherited pediatric disorder

Nikilesh Andhi, Amal Tej Mathew, Ajay Parchuru, Shiv Dinesh Dyarapogu, Ravi Teja Gatla

From Doctor of Pharmacy (PHARM.D) Intern, Department of Clinical Pharmacy Practice, Pulla Reddy Institute of Pharmacy, JNTU, Hyderabad, Telangana, India

Correspondence to: A Nikhilesh, Department of Clinical Pharmacy Practice, Pulla Reddy Institute of Pharmacy, Near Annaram Air Force Academy, Gummadidala Mandal, Medak, Telangana - 502 313, India. E-mail: 2016marsn@gmail.com

Received - 30 April 2020 Initial Review - 16 May 2020 Accepted - 02 June 2020

Severe combined immune deficiency (SCID), also known as alymphocytosis, Glanzmann-Rinker syndrome, and thymic alymphoplasia, is the most severe form of primary immunodeficiencies. There are now at least nine different known genes in which mutation leads in the form of SCID. It is also known as the bubble boy disease because its victims are extremely vulnerable to infectious diseases [1]. SCID is the result of a compromised immune system that is considered almost absent. X-linked SCID (X-SCID) is an immunodeficiency in which the body produces very few T-cells and natural killer (NK) cells [2]. In ADA deficiency 16% of cases were autosomal recessive with profound lymphopenia. Purine nucleoside phosphorylase (PNP) deficiency related to the PNP gene leads to elevated deoxyguanosine triphosphate levels resulting in T-cell toxicity and deficiency. ZAP70 deficiency characterized by the lack of CD8+ and the presence of circulating CD4+ which are unresponsive to a T-cell receptor-mediated stimuli. Janus kinase-3 is an enzyme that mediates the transduction downstream of the gamma chain signal [3,4]. Signs and symptoms like congestion, airway infection, oral ulcers, ear infections and Lung infections like pneumonia causing breathing problems can even lead to death. Whereas digestive problems like vomiting and diarrhea are observed. SCID may cause bone-related problems [5].

In Fig. 1, the first and second chest X-rays were taken during the first session of treatment. Here, the first X-ray shows mild respiratory tract infection (LRTI) and the second X-ray shows bilateral patchy infiltration. The third X-ray was taken in the second session in which perihilar infiltration was observed. Hyperinflated lungs and interstitial pneumonitis were seen in the fourth X-ray, considered during the third session. In 4th session through X-rays 5 and 6 spur like appearance of scapula, widening...
Andhi et al. Severe combined immune deficiency (SCID) Vol 6 | Issue 6 | June 2020 Indian J Case Reports

of costo chondral junctions, heart contours obliterated by bilateral interstitial opacities, absence of thymic silhouette were observed (Fig. 1). In Fig. 2, mild ascites and interstitial atresias were found. Hereditary multiple intestinal atresia (HMIA) is a rare cause of intestinal obstruction in humans which is associated with a profound combined immunodeficiency. HMIA is a presumed autosomal recessive disorder. Besides the gastrointestinal (GI) tract, HMIA also affects the thymus, lungs, spleen, and liver.

LRTI with respiratory distress, failure to thrive with severe anemia, was considered as the provisional diagnosis for the first session of the treatment and started on intravenous (IV) antibiotics (inj. Piptaz 430 mg iv 3 times daily [TID], inj. Linezolid 45 mg iv TID), IV fluids (2/3rd maintenance), oxygen support 1 l/min, frequently nebulized with Levolin (0.31 mg, 6th hourly), and normal saline 3% (2 ml 6th hourly). In view of anemia (Table 1), the baby was given one unit of leukocyte-reduced red blood cells 65 ml over 5 h, Syp. Azee (2 ml, OD), and Syp. Fluvir (1.8 ml, BD). The patient’s father was counseled regarding the baby condition and intensive care requirement.

The baby was shifted to PICU in view of increased anemia, respiratory distress, and oxygen requirements for the second session of treatment. The same treatment was continued initially followed by symptomatic relief with antacid (inj. Pantop 20 mg OD) and antipyretic (inj. Pcm 1 g BD). GI study is shown in Fig. 2. Since oxygen requirement increased, 5 L of oxygen mask was used. In the third session of the treatment, probiotics were introduced as the baby developed loose stools, IV antibiotics were upgraded (inj. Meropenem and inj. Colistin), and inj. fluconazole was given. Blood parameters were regularly monitored. Immune deficiency panel showed IgG total 62.1 mg/dl (232–1411 mg/dl). The baby received 20% albumin transfusion in view of low albumin, as mentioned in Table 3. During the fourth session of treatment, the baby developed generalized seizures for which inj. Midazolam and inj. Levipil were provided. Inj. Septra was prophylactic to treat pneumocystis, as mentioned in Fig. 1.

The baby was shifted to PICU in view of increased anemia, respiratory distress, and oxygen requirements for the second session of treatment. The same treatment was continued initially followed by symptomatic relief with antacid (inj. Pantop 20 mg OD) and antipyretic (inj. Pcm 1 g BD). GI study is shown in Fig. 2. Since oxygen requirement increased, 5 L of oxygen mask was used. In the third session of the treatment, probiotics were introduced as the baby developed loose stools, IV antibiotics were upgraded (inj. Meropenem and inj. Colistin), and inj. fluconazole was given. Blood parameters were regularly monitored. Immune deficiency panel showed IgG total 62.1 mg/dl (232–1411 mg/dl). The baby received 20% albumin transfusion in view of low albumin, as mentioned in Table 3. During the fourth session of treatment, the baby developed generalized seizures for which inj. Midazolam and inj. Levipil were provided. Inj. Septra was prophylactic to treat pneumocystis, as mentioned in Fig. 1.

Primary immune deficiency test showed absolute leukocyte count 3.7 microL (4–12 microL), CD3% 96% (51–77%), absolute CD19+B cells count 83 cell/microL (430–3000), CD19% 2.4%
Severe combined immune deficiency (SCID)

DISCUSSION

SCID is a genetic syndrome characterized by a profound deficiency in cell-mediated and humoral immunity. Clinical manifestation begins in an early stage of life such as opportunistic infections; failure to thrive, diarrhea, etc., are common in primary immunodeficiency [6].

Pre-SCID was first reported in 1950 by Swiss pediatricians Glanzmann and Rinker [7]. The prevalence of SCID around the world is 1 in 100,000 births [8]. In the past decade, about 50 cases were noted in India [9]. Babies with SCID suffer from recurrent infections. The treatment and prevention of infections would prolong their life. They need special treatment to strengthen the immune system and improve the chance of survival. These treatments include hematopoietic stem cell transplantation (HSCT), enzyme replacement therapy (ERT), and lentiviral gene therapy.

HSCT is also called as bone marrow transplant. A bone marrow transplant works best when certain markers from donor match to a recipient. About 95% of the babies treated with HSCT are newborns who survive and develop a working immune system [10]. ERT is used in replacing the missing enzyme in the patient with a man-made version. It requires long-term therapy in such cases throughout life. ERT may vary based on so many factors but priory based on the type of SCID [11]. In the present case, the cause of SCID was genetic as the parents were the second degree consanguineous. A similar case was reported by Bobby et al. [12]. The initial diagnosis and treatment provided also resembled in a study done by Rosen [13]. Lentiviral gene therapy uses a harmless virus to insert a missing gene called IL2RG into bone marrow cells taken from infants with X-SCID disorder. The first X-SCID gene therapy trial two decades ago at first appeared successful, but some patients later developed leukemia because the new gene activated a cancer gene. The scientist reports that the new study used a safer virus as well as chemotherapy to make room for the repaired cells, a step that more effectively restored the infants’ immune systems.

Fig. 1 explains about the variation in the respiratory tract on the progression of the disease from the first session to the fourth session, similar diagnostic report was noted in Gennery et al. [14] and Giraud et al. [15]. Fig. 2 shows multiple intestinal atresia which is associated with combined immune deficiency. This was also observed in a study done by Ali et al. [16]. During the fourth session, antibiotics were given prophylactically to treat pneumocystis, this resembled a study by Irashah [17]. Primary immune deficiency panel showed decreased CD4, CD8, absolute leukocyte count, etc. This kind of report was also noted in report done by Therasecole et al. [18]. In the end, the 653 patients had died while treatment for bone marrow transplantation was under process [19]. If there was an early diagnosis, the patient might have survived [20].

CONCLUSION

SCID is a pediatric emergency where the early diagnosis may result in a better prognosis. Early diagnosis allows adapted care before life-threatening infections or complications enable prompt referral to bone marrow transplant before the occurrence of end-organ damage or secondary infective complications.

REFERENCES

2. Lawrence RJ. David the bubble boy and the boundaries of human. JAMA 1985;253:74-76.
9. Jindal AK, Pilania RK, Rawat A, Sing S. Primary immunodeficiency...

Funding: None; Conflict of Interest: None Stated.
How to cite this article: Andhi N, Mathew AT, Parchuru A, Dyarapogu SD, Gatla RT. A case report on severe combined immune deficiency: A rare inherited pediatric disorder. Indian J Case Reports. 2020;6(6):325-328.
Doi: 10.32677/IJCR.2020.v06.i06.014